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High-Bandwidth Control Design for a Piezoelectric Nanopositioning
Stage

Jinchuan Zheng and Minyue Fu

Abstract—To achieve fast and accurate tracking of a wide-
band reference trajectory, the piezoelectric (PZT) actuator
requires a high-bandwidth control system, which is however
restricted by the resonant mode of the PZT positioning stage.
In this paper, we study two resonant compensation techniques
to damp the resonant mode for increased servo bandwidth.
First, we present a feedback control system using a conventional
notch filter (NF). Subsequently, we develop a complex lead
compensator (CLC) using the phase-stabilized compensation
method. Unlike the NF that is aimed at reducing the resonant
peak gain, the CLC specializes in shaping the phase of open-
loop system at the resonant frequency. The analysis shows that
the closed-loop bandwidth achieved by the CLC is around four
times higher than that of the NF without sacrificing the stability
margin. Finally, we propose a multi-resonant filter (MRF) to
suppress periodic tracking errors by significantly attenuating
the gains at specified frequencies in the sensitivity function.
The experimental results verify that the CLC is superior in
disturbance compensation and periodic trajectory tracking as
compared to the NF, and the add-on MRF can greatly reduce
the tracking error.

I. INTRODUCTION

The piezoelectric (PZT) nanopositioning stages are widely
used in industrial applications such as atomic force micro-
scope (AFM) [1]. The PZT actuator can produce extremely
small displacements in the range of subnanometer to a few
hundreds micrometers with nanoscale positioning precision.
Feedback controllers are typically used to compensate for the
nonlinear PZT hysteresis and creep effect, and the mechan-
ical resonant mode and to obtain a high servo bandwidth
for robust and accurate tracking of a wideband reference
trajectory. A thorough literature review on control approaches
for PZT actuators is reported in [2]. For vibration control,
the main approach is to damp the resonant mode. This has
been done by several design methods such as the notch
filter (NF) [3] and the integral resonant control [4]. The
resonant compensator resulted from these design methods
is low-order and thus easy to implement. In this paper,
we develop an alternative resonant compensator named as
complex lead compensator (CLC) to damp the resonant
mode. Unlike the notch filter that is aimed at reducing the
open-loop gain at the resonant peak, the CLC changes the
open-loop phase characteristics at the resonant frequency
such that the resonant mode is not significantly excited by
the reference commands or the input disturbances during
closed-loop operations. Moreover, it is shown that the CLC
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can lead to a higher closed-loop bandwidth than that of the
NF without sacrificing the stability margin, resulting in more
accurate tracking of a wideband reference trajectory.

Tracking control is another control task for the PZT
actuators to drive the position output to track a desired
trajectory for specific applications. For example, in AFM
applications, the most common form of trajectory is to use
a triangular waveform in the X-axis and a linear ramp in
the Y-axis, thus the combination of which in both axes
achieves the desired raster scan motion [5]. Moreover, in
manufacturing applications such as nanoassembly [6] and
power sintering process [7], step reference is used for fast
positioning such as in pick-and-place operations. To achieve
these tasks, traditional proportional-integral-derivative (PID)
controllers are widely used (see e.g., [7], [8]); and higher-
order controllers designed with modern control technologies
are also reported such as repetitive control [9]. In this paper,
we develop a design method by using a multi-resonant filter
(MRF) to achieve desired narrow-band gain attenuations
at specified frequencies in the sensitivity function without
destabilizing the control system. This method can be applied
to achieve precise tracking of periodic trajectories by simply
adding the MRF whose attenuation frequencies are placed at
the harmonics frequencies of the periodic trajectory.

II. PLANT MODELING

Fig. 1 shows the experimental setup of the PZT nanopo-
sitioning stage (P-752, Polytec PI) studied in this paper. It
consists of a flexure-guided moving stage that is driven by
a PZT microactuator with a travel range of 25 μm, and a
capacitive position sensor with a practical resolution of 9
nm to measure the displacement of the moving stage along
the axis. The position sensor output is fedback to a real-
time DSP system (dSPACE-DS1103) on which the feedback
controller is implemented with the sampling frequency of 20
kHz. Subsequently, the control signal is passed through the
PZT voltage amplifier (E-505, Polytec PI) to drive the PZT
actuator.

The system dynamics of the PZT nanopositioning stage
contain the nonlinear PZT hysteresis effect and the linear
model associated with the vibrational dynamics. In our study,
the nonlinear hysteresis is regarded as a bounded input
disturbance to the PZT actuator. The frequency response data
from the PZT control input signal u to the displacement
output y [the measured PZT plant model P (s)] was obtained
and plotted by the dashed lines in Fig. 2. We can see that
the PZT linear dynamics are dominated by two resonance
modes in the measured frequency range of interest. The
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Fig. 1. Experimental setup of the PZT nanopositioning stage.
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Fig. 2. Frequency responses of the linear PZT model P (s).

first mode that has a large damping ratio (as the resonant
peak is insignificant at the resonant frequency 1018 Hz) is
caused by the voltage amplifier due to the capacitive load
presented by the PZT actuator. The second mode has a
relatively large resonant peak (10 dB) at 2721 Hz, which
is caused by the flexibility of the flexure hinge. We note
that the first mode is associated with 180◦ phase drop,
which significantly decreases the phase margin, resulting in
a limited servo bandwidth. Moreover, the second mode may
induce significant vibrations to the stage motion and should
be carefully damped.

By using the complex curve-fitting algorithm [10], a 4th-
order transfer function is identified for the PZT as follows

P (s) = 0.0514 · s2 − 29668s + 3.914× 108

s2 + 11290s + 4.085× 107
·

s2 − 11380s + 1.263× 109

s2 + 1730s + 2.919× 108

(μm
V

)
. (1)

The solid lines in Fig. 2 indicate that the identified model
has a close match with the measured model.

III. HIGH-BANDWIDTH FEEDBACK CONTROLLER
DESIGNS

In this section, we develop two resonant compensators
based on the feedback control structure to achieve high servo

u
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Fig. 3. Block diagram of the PZT feedback control structure, where
C(s) is the integral controller, F (s) is the resonant compensator, r is the
reference trajectory, y the output displacement, e the tracking error, and u
the control input. d represents the lumped nonlinear hysteresis effect and
input disturbance.

bandwidth for the PZT nanopositioning stage. First, the feed-
back control structure based on integral control is described.
Subsequently, the well-known notch filter servo control is
shown. Next, we present a complex lead compensator design
method for increased servo bandwidth. Finally, experimental
results are shown to verify the effectiveness of the designed
controllers.

A. Control Structure
The block diagram of the PZT feedback control structure

is shown in Fig. 3, where C(s) is an integral controller to
achieve high-gain feedback control, which is given by

C(s) =
ki

s
, (2)

where ki is the integral gain. The controller F (s) is the
resonant compensator, which is obtained by different design
techniques as will be shown later. The control objective here
is to achieve the maximum closed-loop servo bandwidth, and
guarantee the minimal stability margin, that is, phase margin
> 40◦, and gain margin > 6 dB.

B. Notch Filter Servo Control
First, we design the resonant compensator F (s) in Fig. 3

using the conventional notch filter, which is given by

Fnf(s) =
s2 + 2ζn2ωns + ω2

n

s2 + 2ζn1ωns + ω2
n

, (3)

where ωn = 2π2721, ζn1 = 0.3, and ζn2 = 0.04. Moreover,
the integral controller gain of (2) is maximized to be k i =
1000 subject to the required stability margin.

The frequency response functions (FRFs) of the notch
filter based control system is shown in Fig. 4. We can see that
the notch filter significantly reduces the gain of the second
resonance peak at 2721 Hz. However, the associated phase
lag of the notch filter decreases the phase margin. Thus, the
closed-loop bandwidth cannot be greatly increased for the
sake of maintaining the desired phase margin.

C. Complex Lead Compensator Servo Control
In our particular case, we observe that the first resonance

mode caused by the voltage amplifier has a large damping
ratio of 0.9; and additionally its resonance frequency at
1018 Hz is inherently not sensitive to the load variations
which are considered as the major uncertainties in our study.
This means that the first resonance mode is relatively stable
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Fig. 4. Frequency response of notch filter based control system. (a) Open-loop FRF = PCF nf . The notch filter decreases the gain of the resonance
peak at 2721 Hz and results in phase margin = 43 ◦, gain margin = 7.04 dB; (b) Closed-loop FRF = PCFnf /(1+ PCFnf ). The maximum bandwidth
achievable is 630 Hz; (c) Sensitivity FRF = 1/(1 + PCFnf ). The gain of the resonance peak at 2721 Hz is damped to 0 dB.
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Fig. 5. Frequency response of complex lead compensator based control system. (a) Open-loop FRF = PCF clc . The complex lead compensator not only
cancels the first resonance mode but also phase-stabilizes the second resonance mode. The phase margin = 58 ◦, gain margin = 7.0 dB, and the phase
at the second resonance frequency is shaped as −360 ◦ + 25◦@2721 Hz; (b) Closed-loop FRF = PCFclc/(1 + PCFclc). The maximum bandwidth
achievable is significantly increased to be 2512 Hz; (c) Sensitivity FRF = 1/(1+PCFclc). The gain of the resonance peak at 2721 Hz is further damped
to −8 dB; and the gains at low frequencies are also smaller than those in Fig. 4(c), implying higher disturbance rejection capability.

compared to the second resonance mode that is sensitivity
to the load variations.

Hence, it is feasible to use a complex lead compensator
whose zeros are set to cancel the poles of the first resonance
mode. In this way, the gain roll-off and phase lag due to
the first resonance mode are completely compensated; and
thus a larger integral gain can be applied to increase the
bandwidth without sacrificing the stability margin. However,
the complex lead compensator inversely produces the prob-
lem of increasing the gain of the second resonance peak. It
is interesting to find that the second resonance mode can
be compensated simultaneously using the phase-stabilized
control method [11]. More specifically, the poles of the
complex lead compensator should be designed to secure the
phase of the second resonance peak within −360◦ ± 90◦ in
the open-loop system. Note that this method differs from
the notch filter that dedicates to the gain reduction of the

resonance peak. The complex lead compensator is given by

Fclc(s) =
wp

wz
· s2 + 2ζclcωzs + ω2

z

s2 + 2ζclcωps + ω2
p

, (4)

where ωz = 2π1015, ωp = 2π4000, and ζclc = 0.85.
Moreover, a larger integral controller gain ki = 6100 in (2)
is now applicable subject to the required stability margin.
Note that compared to the lead compensator with real poles
and zeros that offers the equal maximum phase lead, the
complex lead compensator in (4) has a smaller ratio of the
high-frequency gain asymptote to the low-frequency gain
asymptote [12]. This property can avoid the amplification
of the high-frequency portion of the sensor noise.

The frequency response functions of the complex lead
compensator based control system is shown in Fig. 5. The
obtained specifications of the control system with NF and
CLC will be summarized later in Table II, which indicates
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Fig. 7. Triangular waveform tracking with notch filter control. Dashed
lines: Triangular reference; Solids lines: Output displacement.

that the CLC can achieve a four times higher closed-loop
bandwidth while satisfying the required stability margin.

D. Experimental Results

The above designed notch filter and complex lead com-
pensator are implemented on the PZT nanopositioning stage,
respectively. First, Fig. 6 shows the experimental result of
impulse input disturbance rejection (by artifically injecting
a 5 V impulse to the control input). We can see that the
CLC control does not excite the resonance mode. The result
verifies the sensitivity FRFs as shown in Figs. 4(c) and
5(c), from which the notched gains at the second resonant
frequency implies less resonance excitation. Secondly, we
compare the triangular waveform tracking in Figs. 7 and 8,
respectively. It is clear that the CLC has smaller tracking
errors than those of NF in all cases of reference frequencies.
Detail performance index will be summarized later in Table
III.
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Fig. 8. Triangular waveform tracking with complex lead compensator con-
trol. Dashed lines: Triangular reference; Solids lines: Output displacement.

IV. MULTI-RESONANT FILTER DESIGN FOR IMPROVED
PERIODIC TRACKING CONTROL

In this section, we develop an add-on multi-resonant filter
for improved periodic tracking performance. Experimental
results are presented to demonstrate the significant improve-
ment of the tracking performance when the MRF is added
on the baseline control system.

A. Design Concept
Fig. 9 shows the block diagram of the MRF, which is

connected in parallel with the baseline controller for easy
implementation. The baseline control system is assumed to
have basic stability margin and performance.

The design criteria here is to shape the gains of the
sensitivity function at the harmonics frequencies of the
periodic reference trajectories as small as possible. As a
result, the tracking error e(t) = r(t) − y(t) will be reduced
for a given r(t). More specifically, from Fig. 9, we can derive
the sensitivity function from the tracking error e(t) to the
reference signal r(t) as follows

S(s) =
e

r
=

1
1 + PCF (1 + M)

=
1

1 + PCF
· 1
1 + T0M

= S0 · SM (5)

where

T0 =
PCF

1 + PCF
(6)

Note that S0 and T0 are the sensitivity function and the
closed-loop function of the baseline control system, respec-
tively. The equation (5) shows that the overall sensitivity
function S(s) is the multiplication of two subsystem S 0 and
SM , which implies that the multi-resonant filter M(s) can
be designed based on the pseudo-plant T0 such that SM is
shaped to a desired curve for reducing the tracking error
within some frequency ranges provided SM is stable [13].
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TABLE I
PARAMETERS OF THE MULTI-RESONANT FILTER

i ωi (rad/s) ϕi ζi mi

1 2π200 −0.385 3.98 × 10−4 0.25

2 2π600 −1.215 1.33 × 10−4 0.026

3 2π1000 −2.068 1.19 × 10−4 3.88 × 10−4

4 2π1400 −2.883 5.68 × 10−5 1.06 × 10−4

To provide narrow-band high gains at the harmonics
frequencies of the periodic reference trajectory, the MRF
with the following form is used

M(s) =
n∑

i=1

mi
s[ωicos(ϕi) − sin(ϕi)s]

s2 + 2ζiωis + ω2
i

, (7)

where n is the number of the harmonics, ωi is the harmonics
frequency of the reference trajectory, ζi is the damping ratio
with ζi ∈ (0, 1), mi is a positive gain, and ϕi is the phase
angle determined by

ϕi = arg
[
T0(jωi)

]
∈ [−π, π]. (8)

Note that the key feature of the MRF of (7) lies in that
the filter zeros are specifically placed at 0 and ωictan(ϕi),
which can lead to slight influence of the stability margin
for a tiny mi, and additionally achieve minimal sensitivity
gains at the harmonics frequencies (see our analysis results
in [13]). Now we give the formulae of mi and ζi, which are
explicitly expressed by the design specifications ζi and Di

as illustrated in Fig. 11(c),

ζi =
Δi(ωi + 0.5Δi)

4ω2
i

, (9)

mi = (10Di/20 − 1)
2ζi

|T0(jωi)| , (10)

where Δi is the frequency difference between the two points
which are approximately 0.3Di away from the notch at the
harmonics frequency ωi, and Di (unit: dB) is the desired
reduction ratio at ωi. Note that choosing too large Δi or Di

may destabilize the control system; in contrast, reducing Δ i

or Di diminishes the effect of the MRF.
For demonstration of the design, we suppose the base-

line controller is the feedback controller with the CLC as
designed in Section III.C and the triangular waveform is
of fundamental frequency of 200 Hz. Then, the MRF can
be easily obtained according the above results. We choose
n = 4 to further compensate for the first 4 odd harmonics of
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Fig. 10. Frequency response of the feedback controller CF clc(1 + M ).

the triangular waveform. The designed MRF parameters are
listed in Table I and the frequency response of the resulting
overall controller CFclc(1 + M) is shown in Fig. 10.

The frequency response functions of the control system
with the CLC/MRF is shown in Fig. 11, which indicates that
the stability margin is almost maintained and the MRF fur-
ther reduces the sensitivity gains at the first 4 odd harmonics
frequencies of the triangular waveform. Table II summarizes
the specifications of the developed controllers. We can see
that the CLC/MRF control achieves the highest closed-loop
bandwidth with the desired stability margin.

B. Experimental Result
The MRF is implemented by simply plugging into the

CLC control system and the experimental results of triangu-
lar waveform tracking is shown in Fig. 12. It is clear that the
MRF greatly reduces the tracking errors as compared to those
in Fig. 8. Table III summarizes the root mean square (RMS)
values of the tracking error. We can see that the controller
with CLC/MRF reduces the RMS tracking error by more than
67% relative to the controller with CLC only. Moreover, we
also verify the performance when a maximum payload of 1
kg is placed onto the positioning stage. The results in Table
III show that the RMS tracking error is only increased by
5.6% in the worst case.

V. CONCLUSION

We have studied two resonant compensation techniques
and a multi-resonant filter design method for high-bandwidth
control of a PZT nanopositioning stage. First, we present
the notch filter that is aimed at reducing the resonance
peak gain. In contrast, the complex lead compensator is
developed by shaping the phase of open-loop system at the
resonant frequency. Although the two techniques can damp
the resonance mode for reduced vibrations, it is shown that
the CLC can provide a much higher closed-loop bandwidth.
As a result, the experimental results verify the superiority of
the CLC in hysteresis and input disturbance compensation,
and periodic trajectory tracking. In order to further reduce
the tracking error, we also develop a multi-resonant filter that
can provide extra gain attenuations in the sensitivity function
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Fig. 11. Frequency response of the CLC based control system with the add-on MRF. (a) Open-loop FRF = PCF clc(1+M ). The MRF does not degrade
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The gains at the first 4 harmonics of the triangular waveform are further reduced.
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TABLE II
COMPARISON OF STABILITY MARGIN AND CLOSED-LOOP BANDWIDTH

Compensator Phase margin Gain margin Bandwidth

NF 43◦@329 Hz 7.04 dB@640 Hz 630 Hz
CLC 58◦@527 Hz 7.0 dB@1530 Hz 2512 Hz

CLC/MRF 46◦@662 Hz 6.0 dB@1500 Hz 2620 Hz

at specified frequencies. The MRF is of add-on feature for
easy implementation and only slightly degrades the stability
margin of the baseline control system. The effectiveness of
the MRF is also verified by the experimental results.
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